Validation of a flow cytometric assay to detect antibodies to a novel cell therapy for immunogenicity assessment

Jing Yu, Amanda Hays, Lynn Kamen, Michelle Miller BioAgilytix, 2300 Englert Drive, Durham, NC 27713

Validation Parame Cut-Points

Sensitivity

Selectivity

Specificity

Intra- and Inter-As Precision

CONCLUSIONS

POSTER #229

Validation Summary Table

eter	Experimental Design	Results
	Cut-points were established with 50 treatment-naïve normal serum samples. The confirmatory cut-point was determined using the same 50 treatment-naïve samples pre- incubated with the K562 cell lysate.	The screening cut-point was statistically determined as 1.26 (normalized value). The confirmatory cut-point, expressed as % inhibition, was determined to be 30.1%.
	Assay sensitivity was defined as the concentration of surrogate positive control antibody that intersected with cut point values following assessment of serial dilutions.	The assay sensitivity was determined to be 57.1 ng/mL (screening assay) and 90.0 ng/mL (confirmatory assay)
	Ten individual lots of normal serum were unspiked and spiked with low (200 ng/mL) and high (5000 ng/mL) concentrations of the SPC.	90% of unspiked individuals met acceptance criteria. 100% of individuals spiked with a low level of PC and all individuals spiked with a high level of PC were above the cut point.
	Specificity was assessed in the screening format and confirmatory format using pooled normal human serum spiked at high (5,000 ng/mL) and low (200 ng/mL) levels of a non-specific antibody.	The low spiked sample tested below the cut point. Although one of four high spiked samples tested above the screening cut point, all samples tested below the confirmatory cut point.
say	High, Mid, and Low PCs were evaluated as six independent replicates on a single plate (intra) and on six independent runs (inter).	The CV for each level of QCs analyzed was less than or equal to 30%.

 We developed and validated a robust, cell-based assay for the detection of antibodies to an engineered, cell-surface protein.

• This assay is an example of a robust, cell-based assay for the detection of antibodies to an engineered, cell-surface protein.

This assay format can be used to assess humoral immunogenicity in human samples when the engineered protein cannot be expressed in a soluble, recombinant form for use in a standard ligand binding assay.